116 research outputs found

    A communication platform demonstrator for new generation railway traffic management systems: Testing and validation

    Get PDF
    Current rail traffic management and control systems cannot be easily upgraded to the new needs and challenges of modern railway systems because they do not offer interoperable data structures and standardized communication interfaces. To meet this need, the Horizon 2020 Shift2Rail OPTIMA project has developed a communication platform for testing and validating the new generation of traffic management systems (TMS), whose main innovative features are the interoperability of the data structures used, standardization of communications, continuous access to real-time and persistent data from heterogeneous data sources, modularity of components and scalability of the platform. This paper presents the main components, their functions and characteristics, then describes the testing and validation of the platform, even when federated with other innovative TMS modules developed in separate projects. The successful validation of the system has confirmed the achievement of the objectives set and allowed a new set of objectives to be defined for the reference platform for the railway TMS/Traffic Control systems

    A communication platform demonstrator for new generation railway traffic management systems: Testing and validation

    Get PDF
    \ua9 2023 The Author(s). Current rail traffic management and control systems cannot be easily upgraded to the new needs and challenges of modern railway systems because they do not offer interoperable data structures and standardized communication interfaces. To meet this need, the Horizon 2020 Shift2Rail OPTIMA project has developed a communication platform for testing and validating the new generation of traffic management systems (TMS), whose main innovative features are the interoperability of the data structures used, standardization of communications, continuous access to real-time and persistent data from heterogeneous data sources, modularity of components and scalability of the platform. This paper presents the main components, their functions and characteristics, then describes the testing and validation of the platform, even when federated with other innovative TMS modules developed in separate projects. The successful validation of the system has confirmed the achievement of the objectives set and allowed a new set of objectives to be defined for the reference platform for the railway TMS/Traffic Control systems

    Petrological evolution of the magmatic suite associated with the Coroccohuayco Cu(-Au-Fe) porphyry-skarn deposit, Peru

    Get PDF
    The petrological evolution of magmatic rocks associated with porphyry-related Cu deposits is thought to exert a first-order control on ore genesis. It is therefore critical to understand and recognize petrological processes favourable to the genesis of porphyry systems. In this study we present new petrographic, geochemical (whole-rock and mineral), and isotopic (Pb, Sr, Nd) data for rocks from the magmatic suite associated with the Eocene Coroccohuayco porphyry–skarn deposit, southern Peru. Previously determined radiometric ages on these rocks provide the temporal framework for interpretation of the data. Arc-style magmatic activity started at Coroccohuayco with the emplacement of a composite precursor gabbrodiorite complex at c. 40·4 Ma. After a nearly 5 Myr lull, magmatic activity resumed at c. 35·6 Ma with the rapid emplacement of three dacitic porphyries associated with mineralization. However, zircon antecrysts in the porphyries show that intra-crustal magmatic activity started c. 2 Myr before porphyry emplacement and probably built a large intra-crustal magmatic body with an associated large thermal anomaly. Our data suggest that all magmas underwent a period of evolution in the deep crust before transfer and further evolution in the upper crust. The gabbrodiorite complex was sourced from a heterogeneous deep crustal reservoir and was emplaced at a pressure of 100–250 MPa where it underwent a limited amount of fractionation and formed a chemically zoned pluton. Its initial water content and oxygen fugacity were estimated to be around 3 wt % H2O and NNO ± 1 (where NNO is the nickel–nickel oxide buffer), respectively. The deep crustal source of the porphyries appears to have been more homogeneous. The porphyries are interpreted to be the product of advanced differentiation of a parental magma similar to the gabbrodiorite. Most of this evolution occurred at deep crustal levels (around 800 MPa) through fractionation of amphibole + pyroxene + plagioclase ± garnet, leading to the development of a high Sr/Y signature characteristic of porphyry-related magmatism worldwide. Subsequent upper crustal evolution (100–250 MPa) was dominated by crustal assimilation, cannibalism of previously emplaced magma batches (proto-plutons) and magma recharge. Water content and oxygen fugacity were estimated to be around 5 wt % H2O and NNO + 1 to NNO + 2, respectively, at the end of the period of upper crustal evolution. This high oxygen fugacity is inferred to have favoured sulphur and metal enrichment in the melt. The high thermal regime generated through 2 Myr of sustained magmatism in the upper crust favoured crustal assimilation, proto-pluton cannibalism, and efficient metal extraction upon fluid exsolution. The Coroccohuayco magmatic suite appears to have acquired its metallogenic potential (high fO2, high Sr/Y) through several million years of deep crustal evolution

    Novel approach for validation of innovative modules for railway traffic management systems in a virtual environment

    Get PDF
    To increase operational efficiency, resilience and capacity of the railway system, the development of modern railway traffic management system (TMS) has attracted more and more attention in recent years. To support the development and implementation of the next generation of TMS and related applications, advanced data collection, transmission and processing approaches, digitalised databases, and virtual validation platforms, etc., are required. In the context of the TMS development (addressed by Technology Demonstrator 2.9 of Shift2Rail Innovation Programme 2), this support is to be provided by a scalable, interoperable and standardised communication platform for internal and external communication between different subsystems, applications and clients. This paper outlines the approach of the ongoing OPTIMA project aimed to develop a communication platform demonstrator for railway TMS based on a novel Integration Layer (IL) and its various interfaces to entities including integration layer services, TMS service, rail business service, external services and operator workstations. Further detailed discussion in this paper relates to the approach to validating the communication platform demonstrator as a functional entity, and as a virtual testing environment to validate railway traffic management and other applications. The validation approach for the applications tested on the communication platform demonstrator is also presented. The results of future implementation of this validation approach will be used to assess the functionality of the communications platform demonstrator developed, and the initial TMS applications tested on it, and form an important step towards developing and implementing IL based communications platforms for future TMSs

    Use cases for obstacle detection and track intrusion detection systems in the context of new generation of railway traffic management systems

    Get PDF
    In this paper, the concept of Obstacle Detection and Track Intrusion Detection (OD&TID) systems related to the operation of trains is introduced, along with a potential concept for such a system. The main focus of the work presented here is the identification and description of system requirements and Use Cases (UC), their detailed classification, including general UCs for mainline railway and UCs specific to freight, as well as an analysis of the UCs and of the method used. The identified UCs have been organised with respect to the mode of operation, Grade of Automation (GoA), and operating conditions. The UCs were further analysed in different UC scenarios, including the pre-conditions, system response, actions made by OD&TID and associated systems and the post use conditions of the scenarios. The priority for implementation and complexity of each UC are discussed with respect to the probability of scenario occurrence and required interfaces. This work has been carried out as part of the process to evaluate implementation constraints, risks and requirements, and the operational scenarios of the OD&TID developed within the EU-funded Shift2Rail project SMART2, which aims to design and develop a prototype OD&TID system

    Rozwój symulacyjnego narzędzia do analizy dynamiki interakcji pojazd szynowy - tor

    No full text
    The importance of modelling and simulation in the field of railway systems has greatly increased in the last decades. Various commercial simulation packages have been developed and are used to analyse the dynamic performance of railway systems. However, although sometimes the user needs to analyse various non-standard solutions, the possibility to integrate further modifications into the structure of such software is quite limited. Therefore, in some cases, in particular for specific modelling and analysis tasks, a feasible option is to develop flexible and robust simulation tools capable of using different configurations by modifying the models performing the dynamic analysis. The paper presents the mathematical modelling background and the conceptual design of a new of a new computational tool for the dynamic simulation of railway vehicle systems. The formulations employed in the proposed mathematical model are based on the multibody techniques. The developed model uses a combined frame of references that allows the use of independent coordinates without the possibility to have singularity configurations depending on the rotation sequence. The simulation tool is designed in a flexible form that enables the study of different configurations of the railway vehicles, as well as various track combinations.W ostatnich dziesięcioleciach znacznie wzrosło znaczenie modelowania i symulacji w dziedzinie systemów kolejowych. Różne rodzaje symulacji komercyjnych pakietów zostały opracowane i są używane do analizy dynamiki wydajności systemów kolejowych. Jednak czasami użytkownik musi analizować różne niestandardowe rozwiązania, a możliwość integracji dalszych zmian w strukturze takiego oprogramowania jest dość ograniczona. W związku z tym w niektórych przypadkach, w szczególności dla konkretnych zadań modelowych, realną opcją jest opracowanie narzędzi symulacyjnych, pozwalających na elastyczne i niezawodne użycie różnych konfiguracji modeli przy wykonywaniu analizy dynamicznej. Artykuł prezentuje nowe narzędzie modelowania i obliczania dynamicznych symulacji układów pojazdu szynowego. Formuły stosowane w proponowanym modelu matematycznym są oparte na technikach wieloobiektowych
    corecore